Skip to main content

Marcelo Cunha Medeiros

Profile picture for Marcelo Cunha Medeiros

Contact Information

126 David Kinley Hall

Research Areas

Professor, Jorge Paulo Lemann Endowed Chair
Associate Head for Faculty Development

Biography

Marcelo has a BA, MSc. and PhD degrees in Electrical Engineering from the Pontifical Catholic University of Rio de Janeiro (PUC-Rio), with an emphasis on Statistics, Optimization, and Control Theory. His area of research is econometrics and data science, and he is particularly interested in the intersection between econometric/statistical theory and cutting-edge machine learning tools. He focuses his research on theoretical developments and empirical applications in finance, macroeconomics, forecasting, and the evaluation of public policies, among other areas. Marcelo was elected Fellow of the Society of Financial Econometrics (SoFiE) in 2022 and serves as Associate Editor for the Journal of the American Statistical Association (Theory and Methods), the Journal of Business and Economic Statistics, the Journal of Financial Econometrics, and the Quarterly Review of Economics and Finance. Marcelo has published more than 50 papers in international peer-reviewed journals such as the Annals of Statistics, the Journal of the American Statistical Association, the Journal of Econometrics, the Journal of Business and Economic Statistics, Econometric Theory, the International Journal of Forecasting, and the Journal of Banking and Finance. 

Research Interests

Econometrics, statistical learning theory, machine learning

Research Description

My area of research is econometrics, and I am particularly interested in the intersection between econometric/statistical theory and cutting-edge machine learning tools. I focus on theoretical developments and empirical applications in finance, macroeconomics, and the evaluation of public policies, among other areas.

The Distant Past (2000-2015)

I have a bachelor's degree in electrical (Systems) engineering and MSc and Ph.D. degrees in electrical engineering, particularly in optimization, control theory, and statistics. Since my early academic life, I have been sure about becoming a researcher. I have always aimed to use mathematical tools to solve practical and diverse real-life problems. My graduate studies gave me a unique combination of the required mathematical foundations to pursue my goal. My life as a faculty member at the Department of Economics at PUC-Rio provided interesting and relevant questions in broad areas of economics and finance. I am deeply grateful to my former and current colleagues and students for their vivid and illuminating discussions.

I finished my Ph.D. in 2000 after spending one year at the Stockholm School of Economics. My dissertation consisted of four research papers. Three of them help to bridge the gap between traditional nonlinear time-series models and neural networks, which were popular in computer science but primarily despised in Economics. The fourth paper proposed a combinatorial optimization algorithm to estimate multiple-regime nonlinear time-series models. The papers have been published in the IEEE Transactions of Neural Networks (2), the Journal of Time Series Analysis, and the Journal of Computational and Graphical Statistics. I pursued the same line of research during my first years at the Department of Economics at PUC-Rio by exploring the connections between econometrics and machine learning. At that time, this was not a popular line of research.

In 2010, Essie Massoumi (Emory University) and I edited a special issue of Econometric Reviews on "The Link Between Statistical Learning Theory and Econometrics: Applications in Economics, Finance, and Marketing.” This was probably one of the first attempts to bring these two areas together before the machine-learning boom in Economics years later.

During these first years, I wish to highlight the following publications:

1.   Medeiros, Marcelo C. and Álvaro Veiga (2005). A Flexible Coefficient Smooth Transition Time Series Model. IEEE Transactions on Neural Networks, 16, 97 – 113.

2.   Medeiros, Marcelo C., Timo Teräsvirta and Gianluigi Rech (2006). Building Neural Network Models for Time Series: A Statistical Approach. Journal of Forecasting, 25, 49-75.

3.   McAleer, Michael and Marcelo C. Medeiros (2008). A Multiple Regime Smooth Transition Heterogeneous Autoregressive Model for Long Memory and Asymmetries. Journal of Econometrics, 147, 104-119.

The Recent Past (2015-2023)

Around 2012, I became interested in high-dimensional datasets due to the boom of big data applications, and my research moved in this direction. Initially, my interest was still in predictive/forecasting models for time series data in high dimensions. However, a few years later, I became interested in methods to estimate counterfactuals and assess the impact of interventions in aggregate data. For example, what is the causal effect of a change in monetary policy on a country's inflation and economic growth? This turned out to be a very fruitful area of research. I have published the following papers on this subject:

1.  Carvalho, Carlos V., Ricardo P. Masini and Marcelo C. Medeiros (2018). ArCo: An Artificial Counterfactual Approach for High-Dimensional Panel Time-Series Data. Journal of Econometrics, 207, 353-380.

2.   Masini, Ricardo P. and Marcelo C. Medeiros (2022). Counterfactual Analysis and Inference with Nonstationary Data. Journal of Business and Economic Statistics, 40, 227–239.

3.  Masini, Ricardo P. and Marcelo C. Medeiros (2021). Counterfactual Analysis with Artificial Controls: Inference, High Dimensions, and Nonstationarity. Journal of the American Statistical Association, 116, 1773–1788.

4. Fan, Jianqing, Ricardo P. Masini and Marcelo C. Medeiros (2021). Do We Exploit all Information for Counterfactual Analysis? Benefits of Factor Models and Idiosyncratic Correction. Journal of the American Statistical Association, 116, 1773–1788.

During these years, I have also had some success by doing theoretical work on estimating large dimensional time-series models. The most relevant published papers in this respect are:

1.  Medeiros, Marcelo C. and Eduardo F. Mendes (2016). L1-Regularization of High-dimensional Time-Series Models with Non-Gaussian and Heteroskedastic Innovations. Journal of Econometrics, 191, 255-271.

2. Caner, Mehmet, Marcelo C. Medeiros and Gabriel Vasconcelos (2023). Sharpe Ratio Analysis in High Dimensions: Residual-Based Nodewise Regression in Factor Models. Journal of Econometrics, 235, 393–417.

3. Fan, Jianqing, Ricardo P. Masini and Marcelo C. Medeiros (2023). Bridging Sparse and Factor Models. Annals of Statistics, 51, 1692–1717. 

I also wish to highlight my empirical work on forecasting in data-rich environments. Indeed, the most relevant empirical paper during this period is:

1.  Medeiros, Marcelo C., Gabriel F. Vasconcelos, Alvaro Veiga and Eduardo Zilberman (2021). Forecasting Inflation in a Data-Rich Environment: The Benefits of Machine Learning Methods. Journal of Business and Economic Statistics, 39, 98-119.

Two other research activities are worth mentioning. The first one is the NASDA/D-Lab@PUC-Rio. In 2014, I created a research laboratory funded by Lojas Americanas S.A., one of the major retail chains in Brazil. The project’s goal was to create a research environment that would bring together students, faculty members, and the industry. I was the head of the D-Lab until 2021 when I decided to follow a different path.

In early 2020, with the outburst of the COVID-19 pandemic, some colleagues and I created Covid19Analytics.com.br, a web portal with daily analysis and forecasts of new cases and deaths in Brazil. The project was very successful, with large media coverage. The methodology behind our forecast was recently published in the International Journal of Forecasting, together with other group members. I have written some other papers related to COVID-19, which are currently being reviewed for publication.

The Future (2024- )

I continuously challenge myself to find interesting research topics with a clear empirical contribution whenever possible. Looking ahead, I aim to keep working hard to publish at the best outlets.

Education

BA in Electrical Engineering (Systems) - Pontifical Catholic University of Rio de Janeiro (December 1996)

MSc in Electrical Engineering (Optimization, Statistics, and Control0 Theory) -  Pontifical Catholic University of Rio de Janeiro (March 1998)

PhD in Electrical Engineering (Optimization, Statistics, and Control0 Theory) -  Pontifical Catholic University of Rio de Janeiro (July 2000)

Awards and Honors

Elected Fellow of the Society for Financial Econometrics (SoFiE)

Associate Editor for the Journal of the American Statistical Association (Theory and Methods)

Associate Editor for the Journal of Business and Economic Statistics

Associate Editor for the Journal of Financial Econometrics

Associate Editor for the Quarterly Review of Economics and Finance

List of Teachers Ranked as Excellent by Their Students, Spring 2024 (ECO535)

List of Teachers Ranked as Excellent by Their Students, Spring 2024 (ECO590)

Additional Campus Affiliations

Affiliated Professor, Lemann Center for Brazilian Studies

Affiliated Professor, Department of Finance, Gies College of Business

Affiliated Professor, Center for Latin American and Caribbean Studies

Recent Publications

Alves, R. P., de Brito, D. S., Medeiros, M. C., & Ribeiro, R. M. (2024). Forecasting Large Realized Covariance Matrices: The Benefits of Factor Models and Shrinkage. Journal of Financial Econometrics, 22(3), 696-742. Article nbad013. https://doi.org/10.1093/jjfinec/nbad013

Medeiros, M. C. (2024). Counterfactual Imputation: Comments on “Imputation of Counterfactual Outcomes when the Errors are Predictable” by Silvia Gonçalves and Serena Ng. Journal of Business and Economic Statistics, 42(4), 1128-1132. https://doi.org/10.1080/07350015.2024.2368805

Collazos, J. A. A., Dias, R., & Medeiros, M. C. (2023). Modeling the evolution of deaths from infectious diseases with functional data models: The case of COVID-19 in Brazil. Statistics in Medicine, 42(7), 993-1012. https://doi.org/10.1002/sim.9654

Fan, J., Masini, R., & Medeiros, M. C. (2023). Bridging Factor and Sparse Models. Annals of Statistics, 51(4), 1692-1717. https://doi.org/10.1214/23-AOS2304

Bollerslev, T., Medeiros, M. C., Patton, A. J., & Quaedvlieg, R. (2022). From zero to hero: Realized partial (co)variances. Journal of Econometrics, 231(2), 348-360. https://doi.org/10.1016/j.jeconom.2021.04.013

View all publications on Illinois Experts